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ABSTRACT

Due to its psychological and physiological interpretation of

naturally occurring data, Nonnegative Matrix Factorization

(NMF) has attracted considerable attention for learning effec-

tive representation for images. And its graph-regularized ex-

tensions have shown promising results by exploiting the low

dimensional manifold structure of data. Actually, their per-

formance can be further improved because they still suffer

from several important problems, i.e., sensitivity to noise in

data, trivial solution problem, and ignoring the discriminative

information. In this paper, we propose a novel method, re-

ferred to as Robust Nonnegative Matrix Factorization with

Discriminability (RNMFD), for image representation, which

can effectively and simultaneously cope with problems men-

tioned above by imposing a sparse noise matrix for data re-

construction and approximate orthogonal constraints. We

carried out extensive experiments on five benchmark image

datasets and the results demonstrate the superiority of our

RNMFD in comparison with several state-of-the-art methods.

1. INTRODUCTION

Images are always represented as vectors of very high dimen-

sionality, which makes it difficult to apply statistical tech-

niques for visual analysis [1]. Thus we hope to find low di-

mensional representation for images that can capture impor-

tant information of original data. Nonnegative Matrix Factor-

ization (NMF) [2], which aims to find low-rank nonnegative

matrices whose product can approximate the original data ma-

trix, has attracted considerable attention as it can learn parts-

based representation for image which has psychological and

physiological interpretation of naturally occurring data [3].

It’s widely used in image representation [4, 5]. Some variants

of NMF have been also proposed, like SparseNMF [6], OTN-

MF [7], and SNMF [8], etc. And its graph (co-)regularized

extensions, such as GNMF [4], DNMF [9], and DRCC [10],

have shown promising performance by exploiting intrinsic lo-

cal manifold structure of data by manifold regularization [11].
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Table 1. Comparison between Some Related Works
LNMF GNMF IGNMF NSDR RNMFD

Feature Learning
√ √ √ √

Locality
√ √ √ √

Discriminability
√ √

Robustness
√ √

Trivial Solution
√ √ √ √

Despite the promising performance, NMF and its graph

regularized extensions can be further improved because they

still share three major flaws. First, most of existing NMF

methods adopt squared loss to measure the data reconstruc-

tion quality. However, squared loss is sensitive to noises and

outliers which are quite common in visual data, such that a

few noisy entries may dominate the factorization because of

their large reconstruction error. Second, the graph regular-

ization may lead to trivial solution and scale transfer problem

[12], resulting in meaningless image representation. Actually,

when the weight of graph regularization is large, the learned

representations of all entries tend to be quite similar. Third,

existing methods mostly focus on preserving the locality of

image data, but ignore the discriminative information which

is also a quite important property for effective representation.

To address flaws above, we propose Robust Nonnegative

Matrix Factorization with Discriminability (RNMFD) for im-

age representation. Motivated by robust PCA [13], we impose

a sparse error matrix to capture the noises in data for recon-

struction. Thus the factorization is expected to capture more

intrinsic latent information from the cleaned data, which may

lead to better representation for images. On the other hand,

we require the learned representation to capture the discrimi-

native structure of data characterized by the scaled group in-

dicator matrix [14]. It can be achieved by incorporating ap-

proximate orthogonal constraints into our objective function.

In addition, our RNMFD can avoid trivial solution and scale

transfer problems effectively because of the constraints. As a

result, our RNMFD can perform feature learning, dimension

reduction, locality preserving, and discriminative information

exploiting simultaneously. It’s also robust to data noise, and

can avoid trivial solution and scale transfer problem caused

by graph regularization. In fact, the properties mentioned

above are all important but previous works ignore some of

them. Comparison between RNMFD and some related works

is shown in Table 1. We can observe that RNMFD can over-

come the flaws in previous methods, leading to better result.



In summary, our contributions are as below. 1) We pro-

pose a novel NMF method for image representation, which

has several important properties that previous works always

ignore some of them. It can address the data noise and also

avoid trivial solution problem resulting from graph regular-

ization. It can also exploit the discriminative information of

data. 2) We propose an effective optimization strategy for

RNMFD and theoretically prove the convergence. This strat-

egy is efficient for high-dimensional visual data and can con-

verge very fast. 3) We conduct extensive experiment on five

benchmark image datasets. The results demonstrate the supe-

riority of RNMFD in comparison to state-of-the-art methods.

2. RELATED WORK

2.1. Preliminaries

Given images X = {x1, ...,xn} ∈ R
d×n, where d is the

dimension of feature and n is the number of images. NMF

finds two nonnegative matrices U ∈ R
d×k and V ∈ R

n×k

whose product can well approximateX. And the squared loss

is widely adopted for measuring the quality of approximation:

ONMF = ‖X−UV
T ‖2F s.t. U,V ≥ 0 (1)

Then V can be regarded as the new representation for images

and used for tasks like clustering. We can adopt an iterative

algorithm [15] with multiplicative rules to minimize Eq. (1),

uil ← uil

(XV)il

(UV
T
V)il

, vjl ← vjl
(XT

U)jl

(VU
T
U)jl

(2)

Now define a p-nearest neighbor matrixW ∈ R
n×n as below,

Wij =

{
1, if xi ∈ N (xj) or xj ∈ N (xi)
0, otherwise

(3)

where N (xi) denotes the p-nearest neighbor of xi. Then we

can obtain a diagonal degree matrix with diagonal elemen-

t Dii =
∑n

j=1 Wij and the graph Laplacian L = D−W.

Then Graph Regularized NMF (GNMF [4]) is formulated as,

OGNMF = ‖X−UV
T ‖2F + αtr(VT

LV) s.t. U,V ≥ 0 (4)

where α is the graph regularization parameter. Intuitively, it’s

not easy to choose proper value for α. Previous work has

pointed out that if α is too large, the graph regularization will

dominate the objective function with Eq. (4) reduced to below

O′

GNMF =
k∑

i=1

v
T
∗iLv∗i s.t. V ≥ 0 (5)

Eq. (5) can be optimized by solving k independent subprob-

lems: Oi = v
T
∗iLv∗i, where all subproblems have the same

solutions up to a scale, i.e., v∗1 ∝ v∗2 ∝ ... ∝ v∗k, which is

obviously meaningless for image representation. This is the

trivial solution problem and some details can be found in [12].

Consider any solution (U∗,V∗) to Eq. (4). For any

ρ > 1, it’s easy to verify that (ρU∗, 1
ρ
V

∗) leads to smaller

objective function value. Thus the final solution should be

U
∗ → ∞ and V

∗ → 0. This is referred to as the scale trans-

fer problem, which is also undesired for image representation.

2.2. Other Work

Some works have made effort to design robust and effective

NMF. In LNMF [16], ℓ2,1 norm is used to measure the re-

construction error. The data noise and outliers are taken in-

to consideration in RCC [17]. In DRCC [10], they apply ℓ2
normalization on columns of U and V in each iteration of

optimization. In IGNMF [12], a Normalized-Cut-like con-

straint is imposed to avoid trivial solution and scale transfer.

In NLCF [5], they require basis to be close to original data

points which will lead to sparse representation, which is mo-

tivated by Local Coordinate Coding [18]. In NSDR [19], the

nonnegative spectral clustering is extended by discriminative

regularization so discriminative information can be exploited.

According to their works, we can observe that all of

the following properties are important for an effective NM-

F method, i.e., preserving locality, discriminability, robust-

ness to data noise, avoiding trivial solution and scale transfer.

Works mentioned above respectively focus on different per-

spectives leading to better performance than NMF while ig-

noring some others. Thus we propose a unified method with

all properties above to learn better representation for images.

3. THE PROPOSED METHOD

3.1. Objective Function

We establish our method based on the objective function of

GNMF, so our method can naturally preserve locality of data.

In real world, a data matrix is always the superposition of

a low-rank component which captures the intrinsic informa-

tion of data and a sparse component which is the noise in data

[20]. In the objective function of NMF where squared loss is

widely used, the noise data (sparse component) is always ig-

nored but it indeed has important effect on the factorization.

So we need to take this sparse component into consideration

first. As suggested in [13], a given data matrix M can be de-

composed as M = L+ S, where L is a low-rank matrix and

S is a sparse matrix. We can notice that in NMF the data

matrix X is approximated by a low-rank matrix UV
T but it

ignores the sparse component containing noises. Intuitively,

we can impose a sparse error matrix S ∈ R
m×n to the ob-

jective function such that the low-rank reconstruction can be

cleaner which can better capture the intrinsic information of

data. Thus we can rewrite the objective function of GNMF as

O1 = ‖X−UV
T − S‖2F + λ‖S‖1 + αtr(VT

LV)

s.t. U,V ≥ 0
(6)



where ‖S‖1 =
∑

ij |Sij | is the ℓ1 norm which can guaran-

tee the sparseness of S and λ is the regularization parameter

to control the weight of sparse component. In the derivation

later, we can see this sparse component can markedly allevi-

ate the effect of elements with large error in factorization that

is also noise which otherwise will dominate the factorization.

With S, our method shows robustness to noise in image data.

Furthermore, the learned representation should character-

ize the discriminative information of data. To address this

issue, we follow the work in [14, 21] where scaled indicator

matrix is introduced. First we can denote a group indicator

matrix Y ∈ {0, 1}n×k, where Yij = 1 if the i-th image be-

longs to the j-th group. And the scaled indicator matrix can

be defined as F = Y(YT
Y)−

1

2 , where every column of F is

F∗j = [0, ..., 0, 1, ..., 1
︸ ︷︷ ︸

nj

, 0, ...0]T/
√
nj (7)

where nj is the number of images in j-th group. So if the

learned representation can capture this group information, it

can be discriminative. Thus, it’s reasonable to require the

learned representation to be close to F. Now by incorporating

this idea into Eq. (6), we can obtain the objective function as,

O2 = ‖X−UV
T − S‖2F + λ‖S‖1 + αtr(VT

LV)

s.t. U,V ≥ 0, ‖V− F‖2F ≤ ǫ
(8)

However, since there is no supervision information available,

we indeed have no knowledge about F. But fortunately, we

could observe from the definition that F is strictly orthogonal:

F
T
F = (YT

Y)−
1

2Y
T
Y(YT

Y)−
1

2 = I (9)

where I is a k × k identity matrix. Furthermore, if ǫ is small

enough, V is very close to F. Because of the orthogonali-

ty of F, V should be approximatively orthogonal. Under the

ultimate situation where ǫ = 0, V is exactly orthogonal be-

cause it’s equal to F. Thus we can substitute the constraints

containingF with approximate orthogonal constraints below,

O3 = ‖X−UV
T − S‖2F + λ‖S‖1 + αtr(VT

LV)

s.t. U,V ≥ 0, ‖VT
V − I‖2F ≤ ǫ

(10)

For the convenience for optimization, we rewrite Eq. (10) as

below. Then we can obtain the objective function of RNMFD,

O = ‖X−UV
T − S‖2F + λ‖S‖1 + αtr(VT

LV)

+ β‖VT
V − I‖2F s.t. U,V ≥ 0

(11)

where parameter β controls the orthogonality of V and a

properly large β can make ‖VT
V − I‖2F ≤ ǫ in Eq. (10)

satisfied for any ǫ. By incorporating the approximate orthog-

onal constraints into the objective function, V learned from

Eq. (11) can characterize the discriminative structure of data.

Besides leading to discriminative representation, the ap-

proximate orthogonal constraints can also address the trivial

solution and scale transfer problems. As the columns of V are

approximatively orthogonal and V is nonnegative, just few

elements in each row may have significantly large value and

each column should be as different as possible to each other.

Hence solution is obviously nontrivial. Also, by substituting

any solution V
∗ with 1

ρ
V

∗ (ρ > 1), the forth term will have

larger value which may lead to larger objective function value

if we set β large enough (e.g., β > 102). Consequently, the

scale transfer problem can be addressed at the same time, too.

3.2. Optimization Algorithm

The objective function O in Eq. (11) isn’t convex in U, V

and S together. Fortunately, we can minimize O iteratively

by updating one while fixing the others. Denote X̂ = X− S.

When V and S are fixed, the objective function w.r.t. U

is equivalent to original NMF. Thus the updating rule for U is

uil ← uil

(X̂V)il

(UV
T
V)il

(12)

Now we need to derive the updating rule for V by fixing

U and S. Noticing that ‖A‖2F = tr(AA
T ) and tr(AB) =

tr(BA), so we can rewrite the objective function as follows,

O = tr(X̂X̂
T − 2X̂VU

T +UV
T
VU

T ) + λ‖S‖1
+ αtr(VT

LV) + βtr(VT
VV

T
V − 2VT

V + I)
(13)

Let φjl be the Lagrange multiplier for constraint vjl ≥ 0, and

denote Φ = [φjl]. The Lagrange L can be written as follows,

L = O + tr(ΦV
T ) (14)

We can compute the partial derivative of L w.r.t. V as below,

∂L
∂V

= −2X̂T
U+ 2VU

T
U+ 2αLV

+ 4βVV
T
V − 4βV +Φ

(15)

Now by using the Karush-Kuhn-Tucker (KKT) conditions,

that is, φjlvjl = 0, we obtain the following equation for vjl,

−(X̂T
U)jlvjl + (VU

T
U)jlvjl + α(LV)jlvjl

+ 2β(VV
T
V)jlvjl − 2β(V)jlvjl = 0

(16)

Then Eq. (16) results in the updating rule for V as follows,

vjl ← vjl
(X̂T

U+ αWV + 2βV)jl

(VU
T
U+ αDV + 2βVV

T
V)jl

(17)

Now we can update S by fixing U and V. Actually,

the optimizing problem with respect to S is element-wise

decoupled and the unique solution to each subproblem has

a closed form with soft-thresholding operator. Now denote

E = X−UV
T = [eij ]. The subproblem for sij is as below,

Oij = (eij − sij)
2 + λ|sij | (18)



It’s not difficult to derive the solution for Eq. (18) as follows,

sij =

{
eij − λ

2 sign(eij), if |eij | > λ
2

0, otherwise
(19)

We can see that for elements with large reconstruction error

which is always caused by noise, the influence of large error

can be alleviated by S. Otherwise, they will dominate the fac-

torization and lead to unsatisfactory result. And for elements

with small error which is common, S has no effect on them.

In fact, by substituting Eq. (19) into Eq. (18), we may obtain

Oij =

{
e2ij , if |eij | ≤ λ

2

λ|eij | − (λ2 )
2, otherwise

(20)

The result reveal that RNMFD can self-adaptively apply ℓ2
loss to small-error entries for accurate reconstruction, and ℓ1
loss to large-error entries to alleviate the influence from noise.

By applying Eq. (12), Eq. (17) and Eq. (19) iteratively,

the objective function can converge to a local minima, which

is theoretically guaranteed by Theorem 1 introduced as below.

3.3. Proof of Convergence

Theorem 1 The function value in Eq. (11) is nonincreasing

under the updating rules in Eq. (12), Eq. (17) and Eq. (19).

The updating rule for U is the same as in the original NMF.

Thus O in Eq. (11) is nonincreasing under Eq. (12), whose

proof can be found in [15]. Furthermore, the derivation of

updating rule for S is also quite simple and O is obviously

nonincreasing under Eq. (19). Thus we just need to prove

thatO is nonincreasing under updating rule for V in Eq. (17).

The proof uses the auxiliary function [22] defined as follows.

Definition 1 G(v, v′) is an auxiliary function for F (v) if

G(v, v′) ≥ F (v), G(v, v) = F (v)

is satisfied.
Lemma 1 If G is an auxiliary function of F , then F is non-

increasing under the updating rule

v(t+1) = argmin
v

G(v, v(t)) (21)

Proof 1 (for Lemma 1)

F (v(t+1)) ≤ G(v(t+1), v(t)) ≤ G(v(t), v(t)) = F (v(t))

We just need to show the updating rule for V in Eq. (17)

is exactly the rule in Eq. (21) with a proper auxiliary function.

DenoteFab as the part ofO which is only relevant to vab. One

auxiliary function for Fab can be defined in the lemma below

Lemma 2 The function

G(v, v
(t)
ab ) = Fab(v

(t)
ab ) + F

′

ab(v
(t)
ab )(v − v

(t)
ab )

+
(VU

T
U+ αDV + 2βVV

T
V)ab

v
(t)
ab

(v − v
(t)
ab )

2
(22)

is an auxiliary function for Fab.

Table 2. Description of benchmark datasets
Dataset #Example #Features #Classes

ORL 400 1024 40

YALE 165 1024 15

UMIST 398 644 20

MNIST 1000 784 10

Semeion 1593 256 10

Proof 2 (for Lemma 2) It’s obvious that G(v, v) = Fab(v).
By comparing G(v, vtab) to Taylor expansion of Fab(v), we

have G(v, vtab) ≥ Fab(v). Similar proof can be found in [4].

Proof 3 (for Theorem 1) By substituting G(v, v
(t)
ab ) in Eq.

(21) with Eq. (22), we can obtain the updating rule as below,

v
(t+1)
ab

=v
(t)
ab

− v
(t)
ab

F
′

ab(v
(t)
ab

)

2(VU
T
U+ αDV+ 2βVV

T
V)ab

= v
(t)
ab

(X̂T
U+ αWV + 2βV)ab

(VU
T
U+ αDV+ 2βVV

T
V)ab

(23)

which is identical to Eq. (17). Because G(v, vab) is the auxil-

iary function of Fab, Fab is nonincreasing under this updating

rule. ThereforeO in Eq. (11) is nonincreasing under Eq. (17).

3.4. Computational Complexity

The time complexity for constructing nearest neighbor graph

is O(n2d). And the updating complexity in each iteration is

O(ndk+(n+d)k2+npk+n2(k+1)+nk(p+1)+n2(k+1)+
n(k+1)+(d+n)k). Thus the overall complexity of RNMFD

is O(tndk + n2d) when d > n, where t is the number of

iterations. It’s linear to the number of images and dimension

when high-dimensional visual data is given, which is the same

as GNMF. Thus it is quite efficient for high-dimensional data.

4. EXPERIMENT AND DISCUSSION

4.1. Datasets, Metrics and Details

To validate the effectiveness of RNMFD for image represen-

tation, we conduct image clustering as in [4, 5] on five bench-

mark image datasets, ORL, YALE, UMIST, MNIST and Se-

meion. Table 2 summarizes the statistics of these five datasets.

We adopt two standard metrics which are widely used for

clustering as the evaluation metrics, i.e., Clustering Accuracy

and Normalized Mutual Information, whose definition can be

found in [12]. Actually, since the clustering task and the cor-

responding metrics are widely used to evaluate the effective-

ness of image representation, therefore we follow the settings.

The following representation learning and clustering

methods are compared to RNMFD. Kmeans is chosen as the

base method. The representation learning methods include

NMF, LNMF [16], GNMF [4], DNMF [9], NLCF [5], and

IGNMF [12]. These methods can learn a new representation

for images. The clustering methods are RCC [17] and NSDR

[19]. These methods directly perform clustering on original

image features. Actually, our RNMFD belongs to the former.



Table 3. Clustering Accuracy (%)

Dataset Kmeans NMF LNMF GNMF DNMF NLCF RCC IGNMF NSDR RNMFD

ORL 41.00 52.75 52.50 54.50 54.50 53.75 57.00 56.00 57.75 65.25

YALE 32.73 35.15 36.15 39.39 39.84 41.21 42.32 40.57 39.39 46.67

UMIST 46.48 46.23 47.34 56.28 52.01 53.37 60.11 58.84 64.08 70.10

MNIST 47.50 47.90 47.10 50.70 49.90 48.70 52.40 52.10 55.80 59.20

Semeion 55.56 45.49 46.42 58.43 60.14 56.41 62.37 60.11 63.34 66.79

Average 44.65 45.50 45.90 51.86 51.29 50.69 54.85 53.52 56.07 61.60

Table 4. Normalized Mutual Information (%)

Dataset Kmeans NMF LNMF GNMF DNMF NLCF RCC IGNMF NSDR RNMFD

ORL 67.01 74.76 73.85 75.81 75.47 74.90 75.81 75.93 75.78 82.35

YALE 40.32 44.97 44.84 46.37 45.02 48.80 49.31 47.01 48.29 53.01

UMIST 63.81 64.74 65.16 75.85 71.64 72.13 76.43 76.31 76.03 80.07

MNIST 47.16 44.93 44.84 48.19 47.90 50.09 57.20 52.11 58.11 62.11

Semeion 50.94 41.04 42.27 55.88 57.33 54.21 59.94 56.72 61.90 63.54

Average 53.85 54.09 54.19 60.42 59.47 60.03 63.74 61.61 64.02 68.22

For meaningful comparison, we perform grid search in

parameter spaces and the best results of baselines are report-

ed. When constructing p-NN graph for methods like GNMF,

p is chosen from {1, 2, ..., 9}. For graph (co-)regularization,

its weight parameter is chosen from {0.01, 0.05, ..., 1000}.
And for NSDR and NLCF, their respectively corresponding

model parameters are selected from {10−2, 10−1, 1, ..., 106}.
RNMFD also has some parameters, i.e., λ, p, α and β. We

can set λ empirically according to the properties of the specif-

ic dataset. Therefore λ can be adaptive to the dataset. When

comparing RNMFD to the baselines, we set p = 5, α = 100
and β = 100 consistently for RNMFD in all experiments. In

the coming section, we conduct empirical analysis on param-

eter sensitivity, which verifies that RNMFD can achieve supe-

rior and stable performance under a wide range of parameter

values. And for all methods in our experiment, we set k to be

the number of true classes following previous works [12, 17].

To remove the influence of random initialization, all the

results reported are the average values over 10 repeated runs.

4.2. Results and Discussion

We first compare the image clustering performance of al-

l methods. The clustering results are shown in Table 3 and

Table 4. We can observe that RNMFD can significantly out-

perform all baseline methods regardless of the datasets. In

addition, the experiment results reveal some important points.

First, methods considering the locality, like GNMF and

RNMFD, achieves better performance than NMF, highlight-

ing the importance of preserving locality, as suggested in [4].

Second, by explicitly considering the unexpected noise in

data, RCC and RNMFD can outperform GNMF and DNMF

who are affected by the noise, which implies that the real-

world dataset may contain noises to some extent. Removing

the noises from data can indeed result in better performance.

(a) Similarity of GNMF (b) Similarity of RNMFD

Fig. 1. Comparison Between GNMF and RNMFD

Third, compared to GNMF and DNMF, IGNMF and RN-

MFD can avoid trivial solution and scale transfer, which leads

to better result. And we noticed that IGNMF and RNMFD can

achieve stable performance under a wide range of value for α
while GNMF shows unstable performance when changing α.

Fourth, among all methods, NSDR and RNMFD achieve

best performance. In fact, they are the only two methods ex-

ploiting the discriminative information. This phenomenon in-

dicates that besides the locality of data, the discriminative in-

formation is also essential for effective image representation.

In a summary, the experiments validates our observation

mentioned before, i.e., all the following properties, locality p-

reserving, discriminability, robustness to noise and the ability

to avoid trivial solution, are important for image representa-

tion. But previous works on NMF ignore some of them. RN-

MFD satisfies all properties hence achieves best performance.

Furthermore, we compare the similarity between samples

represented by new features learned by GNMF and RNMFD

on ORL dataset, which is shown in Figure 1. Brighter color

indicates more similarity. We can see that the inter-class sim-

ilarity of GNMF is very large. But for RNMFD, intra-class

similarity is large while inter-class similarity is very small,

which is a desired property for effective image representation.

We further conduct empirical analysis on parameter sen-
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(d) convergence

Fig. 2. Parameter Sensitivity and Convergence Analysis

sitivity and the results are shown in Figure 2(a) to Figure 2(c).

The dashed lines are the best result from all baseline methods.

In Figure 2(a), we show the performance of RNMFD w.r.t.

p, the number of nearest neighbors. If p is too small, the local

structure can’t be fully utilized. On the contrary, if p is too

large, the nearest neighbor graph may connect two dissimilar

samples. We can observe that our RNMFD can outperform

the best baseline method on all five datasets when p ∈ [3, 7].
The effect of α on RNMFD is shown in Figure 2(b). A s-

mall α may cause a weak regularization such that the locality

of data can’t be effectively preserved while a too large α may

lead to trivial solution for graph-regularized methods like GN-

MF. However, because we have approximate orthogonal con-

straints which can make RNMFD avoid trivial solution, RN-

MFD can achieve stable performance even with quite large

value, e.g., α = 5000, which is similar to IGNMF. RNMFD

shows superior and stable performance when α ∈ [10, 104]
that is much wider than methods such as GNMF and DNMF.

We plot the performance of RNMFD with respect to β in

Figure 2(c). Theoretically, when β is too small, RNMFD may

be ill-defined and prone to trivial solution and the discrimina-

tive information can’t be exploited. On the other hand, when

β is too large, the orthogonal constraints can be so heavy that

the learned representation may be too sparse, which is also

undesired in real world. We can observe that our RNMFD is

able to achieve satisfactory performance when β ∈ [50, 104].
We have proven the proposed multiplicative updating

rules are convergent, now we investigate how fast they can

converge. We plot the objective function value (averaged

by the number of samples) with respect to iterations on all

datasets in Figure 2(d). It is observe that the updating rules

for RNMFD converge very fast, usually within 100 iterations.

5. CONCLUSION

In this paper, we propose a novel RNMFD as an extension

of NMF, for learning image representation. RNMFD can si-

multaneously perform feature learning, dimension reduction,

locality preserving and discriminative information exploiting.

And it’s also robust to data noise and can avoid trivial solu-

tion and scale transfer problem caused by graph regulariza-

tion. We propose an iterative strategy for RNMFD and prove

the convergence. We conduct extensive experiments on five

image datasets. Results validate the effectiveness of RNMFD.
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